Jumat, 30 Januari 2009

Atmometer

Atmometer

From Wikipedia, the free encyclopedia

Jump to: navigation, search

The atmometer or evaporimeter is a scientific instrument used for measuring the rate of evaporation from a wet surface to the atmosphere and invented by the Scottish mathematician and engineer Sir John Leslie.

A simple set up may be made by use of a porous flat plate-like object (a filter paper, for example) which can draw water from an easily measurable source (a graduated cylinder, for example) via a wick of some sort. As water evaporates from the surface, it tends to draw more water from the source through the wick by capillary action to replace the water lost by evaporation. By periodic measurements of the quantity of water remaining in the graduated cylinder, a rate of evaporation can be established. Also, using the surface area of the plate, we can establish a rate of evaporation per unit area.

External links

Atmosphere

An atmosphere (from Greek ατμός - atmos, "vapor" + σφαίρα - sphaira, "sphere") is a layer of gases that may surround a material body of sufficient mass,[1] by the gravity of the body, and are retained for a longer duration if gravity is high and the atmosphere's temperature is low. Some planets consist mainly of various gases, and therefore have very deep atmospheres (see gas giants).

The term stellar atmosphere describes the outer region of a star, and typically includes the portion starting from the opaque photosphere outwards. Relatively low-temperature stars may form compound molecules in their outer atmosphere. Earth's atmosphere, which contains oxygen used by most organisms for respiration and carbon dioxide used by plants, algae and cyanobacteria for photosynthesis, also protects living organisms from genetic damage by solar ultraviolet radiation. Its current composition is the product of billions of years of biochemical modification of the paleoatmosphere by living organisms.

Pressure

Main article: atmospheric pressure

Atmospheric pressure is the force per unit area that is applied perpendicularly to a surface by the surrounding gas. It is determined by a planet's gravitational force in combination with the total mass of a column of air above a location. Units of air pressure are based on the internationally-recognized standard atmosphere (atm), which is defined as 101,325 Pa (or 1,013,250 dynes per cm²).

The pressure of an atmosphere decreases with altitude due to the diminishing mass of gas above each location. The height at which the pressure from an atmosphere declines by a factor of e (an irrational number with a value of 2.71828..) is called the scale height and is denoted by H. For an atmosphere with a uniform temperature, the scale height is proportional to the temperature and inversely proportional to the mean molecular mass of dry air times the planet's gravitational acceleration. For such a model atmosphere, the pressure declines exponentially with increasing altitude. However, atmospheres are not uniform in temperature, so the exact determination of the atmospheric pressure at any particular altitude is more complex.

Escape

Main article: Atmospheric escape

Surface gravity, the force that holds down an atmosphere, differs significantly among the planets. For example, the large gravitational force of the giant planet Jupiter is able to retain light gases such as hydrogen and helium that escape from lower gravity objects. Second, the distance from the sun determines the energy available to heat atmospheric gas to the point where its molecules' thermal motion exceed the planet's escape velocity, the speed at which gas molecules overcome a planet's gravitational grasp. Thus, the distant and cold Titan, Triton, and Pluto are able to retain their atmospheres despite relatively low gravities. Interstellar planets, theoretically, may also retain thick atmospheres.

Since a gas at any particular temperature will have molecules moving at a wide range of velocities, there will almost always be some slow leakage of gas into space. Lighter molecules move faster than heavier ones with the same thermal kinetic energy, and so gases of low molecular weight are lost more rapidly than those of high molecular weight. It is thought that Venus and Mars may have both lost much of their water when, after being photodissociated into hydrogen and oxygen by solar ultraviolet, the hydrogen escaped. Earth's magnetic field helps to prevent this, as, normally, the solar wind would greatly enhance the escape of hydrogen. However, over the past 3 billion years the Earth may have lost gases through the magnetic polar regions due to auroral activity, including a net 2% of its atmospheric oxygen.[2]

Other mechanisms that can cause atmosphere depletion are solar wind-induced sputtering, impact erosion, weathering, and sequestration — sometimes referred to as "freezing out" — into the regolith and polar caps.

Composition

Atmospheric gases scatter blue light more than other wavelengths, giving the Earth a blue halo when seen from space.

Initial atmospheric makeup is generally related to the chemistry and temperature of the local solar nebula during planetary formation and the subsequent escape of interior gases. These original atmospheres underwent much evolution over time, with the varying properties of each planet resulting in very different outcomes.

The atmospheres of the planets Venus and Mars are primarily composed of carbon dioxide, with small quantities of nitrogen, argon, oxygen and traces of other gases.

The atmospheric composition on Earth is largely governed by the by-products of the very life that it sustains. Earth's atmosphere contains roughly (by molar content/volume) 78.08% nitrogen, 20.95% oxygen, a variable amount (average around 0.247%, National Center for Atmospheric Research) water vapor, 0.93% argon, 0.038% carbon dioxide, and traces of hydrogen, helium, and other "noble" gases (and of volatile pollutants).

The low temperatures and higher gravity of the gas giantsJupiter, Saturn, Uranus and Neptune — allows them to more readily retain gases with low molecular masses. These planets have hydrogen-helium atmospheres, with trace amounts of more complex compounds.

Two satellites of the outer planets possess non-negligible atmospheres: Titan, a moon of Saturn, and Triton, a moon of Neptune, which are mainly nitrogen. Pluto, in the nearer part of its orbit, has an atmosphere of nitrogen and methane similar to Triton's, but these gases are frozen when farther from the Sun.

Other bodies within the Solar System have extremely thin atmospheres not in equilibrium. These include the Moon (sodium gas), Mercury (sodium gas), Europa (oxygen), Io (sulfur), and Enceladus (water vapor).

The atmospheric composition of an extra-solar planet was first determined using the Hubble Space Telescope. Planet HD 209458b is a gas giant with a close orbit around a star in the constellation Pegasus. The atmosphere is heated to temperatures over 1,000 K, and is steadily escaping into space. Hydrogen, oxygen, carbon and sulfur have been detected in the planet's inflated atmosphere.

Structure

Earth

Main article: Earth's atmosphere

The Earth's atmosphere consists, from the ground up, of the troposphere (which includes the planetary boundary layer or peplosphere as lowest layer), stratosphere, mesosphere, thermosphere (which contains the ionosphere and exosphere) and also the magnetosphere. Each of the layers has a different lapse rate, defining the rate of change in temperature with height.

Three quarters of the atmosphere lies within the troposphere, and the depth of this layer varies between 17 km at the equator and 7 km at the poles. The ozone layer, which absorbs ultraviolet energy from the Sun, is located primarily in the stratosphere, at altitudes of 15 to 35 km. The Kármán line, located within the thermosphere at an altitude of 100 km, is commonly used to define the boundary between the Earth's atmosphere and outer space. However, the exosphere can extend from 500 up to 10,000 km above the surface, where it interacts with the planet's magnetosphere.

Sabtu, 10 Januari 2009

air

The Earth's atmosphere is a layer of gases surrounding the planet Earth that is retained by the Earth's gravity. Dry air contains roughly (by molar content – equivalent to volume, for gases) 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.038% carbon dioxide, and trace amounts of other gases; but air also contains a variable amount of water vapor, on average around 1%. This mixture of gases is commonly known as air. The atmosphere protects life on Earth by absorbing ultraviolet solar radiation, warming the surface through heat retention (greenhouse effect), and reducing temperature extremes between day and night.

There is no definite boundary between the atmosphere and outer space. It slowly becomes thinner and fades into space. Three quarters of the atmosphere's mass is within 11 km of the planetary surface. An altitude of 120 km (~75 miles or 400,000 ft) marks the boundary where atmospheric effects become noticeable during re-entry. The Kármán line, at 100 km (62 miles or 328,000 ft), is also frequently regarded as the boundary between atmosphere and outer space.

Composition

Filtered air includes at least trace amounts of ten (or more) of the chemical elements. Substantial amounts of argon, nitrogen, and oxygen are present as elementary gases, as well as hydrogen (and additional oxygen) in water vapor (H2O). Much smaller or trace amounts of elementary helium, hydrogen, iodine, krypton, neon, and xenon are also present, as well as carbon in carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO). Many additional elements from natural sources may be present in tiny amounts in an unfiltered air sample, including contributions from dust, pollen and spores, sea spray, vulcanism, and meteoroids. Various industrial pollutants are also now present in the air, such as chlorine (elementary or in compounds), fluorine (in compounds), elementary mercury, and sulfur (in compounds such as sulfur dioxide [SO2]).

Composition of Earth's atmosphere as of Dec. 1987. The lower pie represents the least common gases that compose 0.038% of the atmosphere. Values normalized for illustration.
Mean atmospheric water vapor
Composition of
dry atmosphere, by volume
[5]
ppmv: parts per million by volume
Gas Volume
Nitrogen (N2) 780,840 ppmv (78.084%)
Oxygen (O2) 209,460 ppmv (20.946%)
Argon (Ar) 9,340 ppmv (0.9340%)
Carbon dioxide (CO2) 383 ppmv (0.0383%)
Neon (Ne) 18.18 ppmv (0.001818%)
Helium (He) 5.24 ppmv (0.000524%)
Methane (CH4) 1.745 ppmv (0.0001745%)
Krypton (Kr) 1.14 ppmv (0.000114%)
Hydrogen (H2) 0.55 ppmv (0.000055%)
Not included in above dry atmosphere:
Water vapor (H2O) ~0.40% over full atmosphere, typically 1% to 4% near surface
Minor components of air not listed above include[citation needed]
Gas Volume
nitrous oxide 0.3 ppmv (0.00003%)
xenon 0.09 ppmv (9x10-6%)
ozone 0.0 to 0.07 ppmv (0%-7x10-6%)
nitrogen dioxide 0.02 ppmv (2x10-6%)
iodine 0.01 ppmv (1x10-6%)
carbon monoxide trace
ammonia trace

ppmv

The composition figures above are by volume-fraction (V%), which for ideal gases is equal to mole-fraction (that is, the fraction of total molecules). Although the atmosphere is not an ideal gas, nonetheless the atmosphere behaves enough like an ideal gas that the volume-fraction is the same as the mole-fraction for the precision given.

By contrast, mass-fraction abundances of gases will differ from the volume values. The mean molar mass of air is 28.97 g/mol, while the molar mass of helium is 4.00, and krypton is 83.80. Thus helium is 5.2 ppm by volume-fraction, but 0.72 ppm by mass-fraction ([4/29] × 5.2 = 0.72), and krypton is 1.1 ppm by volume-fraction, but 3.2 ppm by mass-fraction ([84/29] × 1.1 = 3.2).

[edit] Heterosphere

Below the turbopause at an altitude of about 100 km (not far from the mesopause), the Earth's atmosphere has a more-or-less uniform composition (apart from water vapor) as described above; this constitutes the homosphere.[6] However, above about 100 km, the Earth's atmosphere begins to have a composition which varies with altitude. This is essentially because, in the absence of mixing, the density of a gas falls off exponentially with increasing altitude but at a rate which depends on the molar mass. Thus higher mass constituents, such as oxygen and nitrogen, fall off more quickly than lighter constituents such as helium, molecular hydrogen, and atomic hydrogen. Thus there is a layer, called the heterosphere, in which the earth's atmosphere has varying composition. As the altitude increases, the atmosphere is dominated successively by helium, molecular hydrogen, and atomic hydrogen. The precise altitude of the heterosphere and the layers it contains varies significantly with temperature.

In pre-history, the Sun's radiation caused a loss of the hydrogen, helium and other hydrogen-containing gases from early Earth, and Earth was devoid of an atmosphere. The first atmosphere was formed by outgassing of gases trapped in the interior of the early Earth, which still goes on today in volcanoes.[7]

[edit] Density and mass

Earth's atmosphere from space
Temperature and mass density against altitude from the NRLMSISE-00 standard atmosphere model

The density of air at sea level is about 1.2 kg/m3 (1.2 g/L). Natural variations of the barometric pressure occur at any one altitude as a consequence of weather. This variation is relatively small for inhabited altitudes but much more pronounced in the outer atmosphere and space because of variable solar radiation.

The atmospheric density decreases as the altitude increases. This variation can be approximately modeled using the barometric formula. More sophisticated models are used by meteorologists and space agencies to predict weather and orbital decay of satellites.

The average mass of the atmosphere is about 5 quadrillion metric tons or 1/1,200,000 the mass of Earth. According to the National Center for Atmospheric Research, "The total mean mass of the atmosphere is 5.1480×1018 kg with an annual range due to water vapor of 1.2 or 1.5×1015 kg depending on whether surface pressure or water vapor data are used; somewhat smaller than the previous estimate. The mean mass of water vapor is estimated as 1.27×1016 kg and the dry air mass as 5.1352 ±0.0003×1018 kg."

Temperature and layers

The temperature of the Earth's atmosphere varies with altitude; the mathematical relationship between temperature and altitude varies among five different atmospheric layers (ordered highest to lowest, the ionosphere is part of the thermosphere):

  • Exosphere: from 500 – 1000 km (300 – 600 mi) up to 10,000 km (6,000 mi), contain free-moving particles that may migrate into and out of the magnetosphere or the solar wind.
exobase boundary
  • Ionosphere: the part of the atmosphere that is ionized by solar radiation. It plays an important part in atmospheric electricity and forms the inner edge of the magnetosphere. It has practical importance because, among other functions, it influences radio propagation to distant places on the Earth. It is located in the thermosphere and is responsible for auroras.
thermopause boundary
  • Thermosphere: from 80 – 85 km (265,000 – 285,000 ft) to 640+ km (400+ mi), temperature increasing with height.
mesopause boundary
  • Mesosphere: From the Greek word "μέσος" meaning middle. The mesosphere extends from about 50 km (160,000 ft) to the range of 80 to 85 km (265,000 – 285,000 ft), temperature decreasing with height. This is also where most meteors burn up when entering the atmosphere.
stratopause boundary
  • Stratosphere: From the Latin word "stratus" meaning spreading out. The stratosphere extends from the troposphere's 7 to 17 km (23,000 – 60,001 ft) range to about 51 km (160,001 ft). Temperature increases with height. The stratosphere contains the ozone layer, the part of the Earth's atmosphere which contains relatively high concentrations of ozone. "Relatively high" means a few parts per million—much higher than the concentrations in the lower atmosphere but still small compared to the main components of the atmosphere. It is mainly located in the lower portion of the stratosphere from approximately 15 to 35 km (50,000 – 116,000 ft) above Earth's surface, though the thickness varies seasonally and geographically.
tropopause boundary
  • Troposphere: From the french word "τρέπω" meaning to turn or change. The troposphere is the lowest layer of the atmosphere; it begins at the surface and extends to between 7 km (23,000 ft) at the poles and 17 km (60,000 ft) at the equator, with some variation due to weather factors. The troposphere has a great deal of vertical mixing because of solar heating at the area. This heating cools air masses, which makes them less dense so they rise. When an air mass rises, the pressure upon it decreases so it expands, doing work against the opposing pressure of the surrounding air. To do work is to expend energy, so the temperature of the air mass decreases. As the temperature decreases, water vapor in the air mass may condense or solidify, releasing latent heat that further uplifts the air mass. This process determines the maximum rate of decline of temperature with height, called the adiabatic lapse rate. The troposphere contains roughly 80% of the total mass of the atmosphere. Fifty percent of the total mass of the atmosphere is located in the lower 5.6 km of the troposphere.

The average temperature of the atmosphere at the surface of Earth is 20 °C (60 °F)